
Realizations of the q-Heisenberg and q-Virasoro algebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 3439

(http://iopscience.iop.org/0305-4470/27/10/020)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 22:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 27 (1994) 3439-3444. Printed in the UK 

Realizations of the q-Heisenberg and q-Virasoro algebras 

C H Oht and K Singh 
Department of Physics, Faculty of Science, National University of Singapore, Lower Kent 
Ridge, Singapore 051 I ,  Republic of Singapore 

Received 31 January 1994 

Abstract We give field-theoretic realizations of both the y-Heisenberg and the q-Virasoro 
algebra. In particular, we obtain the operator product expansions among the current and the 
energy-momentum tensor obtained using the Sugawara construction. 

Quantum algebras or more precisely quantized universal enveloping algebras first appeared 
in connection with the study of the inverse scattering problem [l] .  Subsequently it was 
shown that these algebras are also deeply rooted in other areas such as exactly soluble 
statistical models [Z], factorizable S-matrix theory [3] and conformal field theory [4]. 
Mathematically, these algebras are Hopf algebras which are non-co-commutative. These 
can be compared with the classical universal enveloping algebras which can be endowed 
with co-commutative Hopf structures. In this regard quantum algebras appear as natural 
generalizations of the usual Lie algebras. 

Lately there has been a lot of interest in the q deformation of the Virasoro algebra 
[6-9]. By generalizing a differential realization of su,(l, l),  Curtright and Zachos (cz) [6] 
obtained a q-analogue of the centreless Virasoro algebra. Its central extension was later 
furnished by Aizawa and Sato [7]. However, to date, the existence of a Hopf structure for 
this algebra remains an open question. 

More recently Chaichian and PreSnajder [SI proposed a different version of the q- 
Virasoro algebra by carrying out a Sugawara construction on a q-analogue of an infinite- 
dimensional Heisenberg algebra (H,(oo)). They also showed that in a unitary representation, 
this algebra possesses a primitive (co-commutative) Hopf structure. 

In this paper we realize both the q-Heisenberg as well as the q-Virasoro algebra using 
field operators. In particular, we obtain the operator product expansions (OPES) of these 
field operators using some of the standard techniques of conformal field theory. The central 
term for the q-Viasoro algebra obtained via the realization is shown to differ slightly from 
the one given in [SI. It is further shown that our expression leads to the standard case in 
the q + 1 limit$. 

We begin by summarizing some results of [SI that will be used later. The algebra of 
H,(oo) is based on the one-dimensional Heisenberg algebra which is a bona fide Hopf 
algebra with relations [lo]$ 

[a, at]  E a u t  - u ta  = 

t Email address: PHYOHCH@NUSVM.Bitnet 
t Contrary to the claims of [SI, the central term presented there does not have the correct limit, 
5 It is worth noting that this algebra differs from those given in [ I l l .  

(1) 
sinh(cH/Z) 

€12 
[H, a1 = o [H, a t ]  = o 
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with q = e' as the deformation parameter. Here a and at can be regarded as the annhilation 
and creation operators, respectively. The algebra of Hq(cc)) is obtained by considering an 
infinite collection of these operators labelled as 
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a..a-,=a,i n = 1 , 2  ,... 
with commutation relations 

[a,". a,] =om, [ H ,  a,] = 0 

where 

The associative algebra generated by (1. H, a,]nEz with the above relations can be endowed 
with Hopf structure by defining the following: 
(i) co-product: 

<(a,) = 0 E ( H )  = 0 ~ ( 1 )  = 1 (4b) 

(iii)antipode: 

S(a,) = -a, S ( H )  = - H  S(1) = 1. (4c) 

The q-deformed Virasoro generators in the Sugawara construction read as 

L; = 1 x c o s h ( - p y H )  k - n  : axan : 8 k c n . m .  
k.n 

(5) 

Here the normal ordering prescription is taken as 

: aka. := aka,, - @ ( k ) o k ,  (6) 
where Wkn is defined in (3) and @ ( k )  = 1 or 0 for k positive or negative, respectively. It is 
worth noting that q-Virasoro generator canies an additional integer-valued index which is 
required for the commutators between the generators to close. The commutation relations 
furnished in [8] are given by 



Realizations of the q-Heisenberg and q-Krasoro algebras 344 1 

with 

sinh(i(or + p + 1)mc H )  

sinh(f(a + p + ] ) E H )  
sinh(i(or + p ) m e H )  
sinh(f(a + B ) E H )  

c;a = - 2cosh(msH + E H )  , 

Here a few remarks are in order. Firstly the q + 1 limit yields 

1 
(8) 96 

which shows that although the operator part, i.e. terms involving the generators reduce to 
the usual expression, the central term does not. Secondly the Hopf structure that can be 
written down for the algebra is obvious only for the case when H is a constant or when a 
unitary irreducible representation is chosen. In this case, the algebra becomes an infinite- 
 dimensional^ Lie algebra and this can be endowed with a primitive (co-commutative) Hopf 
structure. In general, however, with H non-trivial in (7), the existence of a Hopf structure 
has not been shown. Even if it does exist, as pointed out in [ 8 ] ,  it would most likely be 
non-trivial and complicated. 

To give a field-theoretic realization of an algebra, one must essentially furnish the 
operator product expansion (OPE) between the appropriate field operators. In fact only the 
singular part of this expansion is essential as it embodies all the relevant information about 
the algebra. For instance, the usual Heisenberg algebra can be obtained from the singular 
portion of the OPE between two currents: 

[ L E ,  141 + [L,, L,J = (m - ~ ) H L , + ,  - -m(m - l ) ( l l m  + 2)~~6,+, .0  

1 
J ( z ) J ( w )  = - + regular terms 

( z  - WIZ 

To obtain a q-analogue of this OPE, we begin by defining the current in the usual way, 
m 

with the operators ( Q ~ ]  satisfying (2) instead of the usual Heisenberg algebra. Here we will 
restiict ourselves to the case of a unitary representation in which H = I .  To simplify the 
notation we write 

[a,. = K[mlh+n,o  (1 1) 

where 

q m  - q-m 1 .  
4 - 4-' E 

[ X I  = and K = -sinh(c) 

Then by using (IO) and (11) we have for lw[ c lzl, 

J ( Z ) J ( W )  = Ca,a . z -m-Iw-n- l  
m.n 
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where ( z  - w): = ( z  - w9-')(z - wq). It is interesting to note that the poles are located at 
two points, (wq-', w9) and both are of order 1. This differs from the standard case where 
there is a single pole of order 2 at z = w. However, in the q -+ I limit these poles coalesce 
to form a pole of order 2 and expression (12) reduces to (9). The situation here is quite 
similar to that of [7] and [12] where a realization for the a algebra 161 also leads to such 
degeneracies in the poles. 

Before proceeding further, it is instructive to check whether the above 9-OPE leads to 
the 9-Heisenberg algebra as required. To this end, we first invert (IO) to give 
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where the contour C is taken as IzI = constant. Here we use the usual prescription of 
radial quantization of standard conformal field theory in which different 'times' correspond 
to concenbic circles of different radii. In this context, time-ordering is replaced by that of 
radial-ordering: 

Then by using the standard procedure for computing an 'equal-time' commutator [13], we 
have 

where the integral over z is taken around all the poles in the OPE of J ( z ) J ( w ) .  Now the 
above procedure only makes sense if we assume that the singularities of J(z)J(w) are 
located on the [zI = lwl contour since otherwise these poles will not make any contribution 
to the integral. For the 9-OPE (12) this requires that 9 be a pure phase (or 1q1 = I ) .  
Consequently by substituting (12) into (15) and using the fact 

we obtain (11). 
In analogy to the standard case, we now define the energy-momentum tensor as 

m 

where the index 01 also appean on T by virtue of its presence on L. 

of the currents reads as 
To be consistent with (5). the corresponding Sugawam construction for Ta(z)  in terms 

Tu(z)  = : J(zq'/2)J(zq-u'2) : +$ : J(zq*/2)J(zq"'2) : . (18) 
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It is worth noting that the second term on the right-hand side is identical to the first with 
g and g-' interchanged. (In the following such terms will be denoted by g ++ g-I for 
simplicity.) It is easy to verify that (10) and (17) together with (18) lead to (5). 

Next let us examine the OPE between TU(z) and J ( w ) :  

Since only the singular part is of interest, we have, using (12), 
T U ( z ) J ( w )  = f : J ( z g q J ( z g - * / 2 )  : J(w) + g + 4-1 . 

T@(z)J(w) - ~ ( J ( z q a l Z ) J ( w ) ) J ( Z g - 0 / 2 )  + g i+ 4-1 

(19) 

Then by expanding the field J(zg-"/2) using the q-Taylor's seriest: (see [7]) 

the above OPE reduces to 
J ( Z ~ - = / ~ )  = J(wq-u-l)  + (zq-'/2 - wq-CL-t)ag(wq-n) + . . . (21) 

which is the singular part of the q-OPE between Ta(z) and J(w). 
It is again instructive to compare the commutator between LE and a, obtained from the 

q-OPE above with that evaluated directly from the commutation relations. To this end we 
have after a short computation 

= -K cosh(or(2n + m)6/2)[n]am+, (U) 
which is precisely what one would obtain if the bracket was evaluated directly from the 
definition (5) and the relations (1 1). 

With the q-OPE between Ta(z) and J(w) so obtained we can go on to compute the 
g-om between T U ( z )  and TB(w). Indeed, by writing 

T@(Z)T~(W) = Iim ~T ' (Z)  : J(wqfl/2)J(w'q-B/z) : +g + g-' 

p t B + I ( w q " + ' ) / 2 )  T-a+B-l (wq(~+l l /2)  

(24) 
W'+W 

and using (22) we have after a lengthy calculation 

1 Te-8- 1 ( wq(U- 1 )/z) - 
I 

I 

K 
T " ( z ) T B ( w )  - 2(q - g-l)w (zq-(u-B)/2 - ,gB+l) + (zg-(m+B)/Z - wq-B+I) 

r-a-B+1 (wq(a- l ) /z)  

(zg-(u-8)/2 - w g W )  (zq-("+a)P - wq-8-1) 

KZ 
qg - g - 9 w 3  ( q ~ + ~ / 2 t l  - q-B/z)2 ( z q - ( ~ - w  - wqs+l) 

- 

1 1 

9 

1 

+ 
1 

+ (qo-B/2+1 - qB/z)2  (zq-(e+B)/2 - w q - B + l )  
4 

1 1 - 
(qn+B/2-I - q-B/2)z ( z g - ( 4 ) / 2  - wqB-I) 

(g"-B/2-1 - q B / 2 ) 2  (zg-"tB)/2 - wq-8-1) 

9 

(25) 

I 1 1 - 
9 

+g  ff 4-1 

t In (21) we only retain the fint two terms of the expansion as the rest wntain the factor (zq-Of l  - w): which 
cancels with the term in the denominator of (U)). 
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where the terms in the first bracket correspond to the operator part while those in the second 
are the anomaly terms. From this q-OPE we can obtain the q-Virasoro algebra by evaluating 
the integrals in 
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For the operator part the terms are identical to those of (7a) but central term now yields 

where 

' sinh(f(or+p - 2 ) ~ )  ' 

It is interesting to note that in the limit q + 1 (or c + 0) the central term reduces to 

which is the usual central term that one has for the V i o r o  algebra. 
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